skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "McClelland, William"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Titanite (CaTiSiO5) is a commonly occurring and versatile accessory mineral with broad applications in petrochronology. In situ U-Pb and trace element analyses via SIMS and LA-ICPMS are routinely performed using a matrix-matched reference material for U-Pb and standard glasses (non-matrix matched reference material) for elemental abundance determination. We report U-Pb isotopic ratios and major and trace element concentrations for three titanite samples (Ecstall, McClure and FCT) which are commonly used as reference materials in petrochronology studies. In addition, we characterize two new samples which can potentially serve as matrixmatched reference materials for titanite trace element geochemistry (BLR-2 and BRA-1). Based on electron microprobe analysis, samples BLR-1 and BLR-2 are homogeneous and suitable for use as a primary reference material for trace element concentrations. Whereas Ecstall, McClure, and FCT titanite reference materials show high intra-grain heterogeneity, yielding relative standard deviations for most trace elements between 5% and 40%, with higher standard deviations for U of 70% for Ecstall (n = 26), 265% for McClure (n = 22), and 202% for FCT (n = 26). Therefore, we suggest that these grains are unsuited to serve as reference materials for trace element quantification. The BRA-1 titanite has low trace element concentrations and is chemically heterogeneous (total REE abundances of 40 ppm for the rim and 95 ppm for the core of the grain), thus is not suitable for standardization of chemical composition using LA-ICPMS. It is commonly asserted that a matrix-matched standardization provides a more robust downhole fractionation correction compared to a non-matrix matched standardization. However, it remains unclear which standardization approach (matrix-matched vs non-matrix matched/glass) is more accurate for titanite trace element quantification. To resolve this, we tested several standardization approaches for trace element quantification, comparing matrix-matched (BLR-1) and nonmatrix- matched (NIST612) standardizations with different internal elemental standards (IES; Ca, Si and Ti) and without internal standardization (semi-quantitative). To provide an independent constraint on the accuracy of the various trace element standardization techniques we compared results to trace element concentrations obtained via solution Q-ICPMS on crushed BLR-2 and BRA-1 aliquots. The matrix-matched standardization using Si as the IES yields the best reproducibility of trace element concentrations followed by the matrix-matched reduction using Ti as the IES. Moreover, the matrix-matched semi-quantitative correction yielded the lowest weighted percentage of difference compared to reference trace composition quantified by solution ICPMS. Finally, in this contribution we also benchmark sampling-size for precise U-Pb dating of common-Pb rich phases like titanite. 
    more » « less
  2. Abstract Garnet–kyanite–staurolite assemblages with large, late porphyroblasts of amphibole form garbenschists in Ordovician volcaniclastic rocks lying immediately south of the Pearya terrane on northernmost Ellesmere Island, Canada. The schist, which together with carbonate olistoliths makes up the Petersen Bay Assemblage (PBA), displays a series of parallel isograds that mark an increase in metamorphic grade over a distance of 10 km towards the contact with Pearya; however, a steep, brittle Cenozoic strike-slip fault with an unknown amount displacement disturbs the earlier accretionary relationship. The late amphibole growth, probably due to fluid ingress, is clear evidence of disequilibrium conditions in the garbenschist. In order to recover the P–T history of the schists, we construct isochemical phase equilibrium models for a nearby garnet–mica schist that escaped the fluid event and compare the results to quartz inclusion in garnet (QuiG) barometry for a garbenschist and the metapelitic garnet schist. Quartz inclusions are confined to garnet cores and the QuiG results, combined with Ti-in-biotite and garnet–biotite thermometry, delineate a prograde path from 480 to 600°C and 0.7 to 0.9 GPa. This path agrees with growth zoning in garnet deduced from X-ray maps of the spessartine component in garnet. The peak conditions obtained from pseudosection modelling using effective bulk composition and the intersection of garnet rim with matrix biotite and white mica isopleths in the metapelite are 665°C at ≤0.85 GPa. Three generations of monazite (I, II and III) were identified by textural characterization, geochemical composition (REE and Y concentrations) and U–Pb ages measured by ion microprobe. Monazite I occurs in the matrix and as inclusions in garnet rims and grew at peak P–T conditions at 397 ± 2 Ma (2σ) from the breakdown of allanite. Monazite II forms overgrowths on matrix Monazite I grains that are oriented parallel to the main schistosity and yield ages of 385 ± 2 Ma. Monazite III, found only in the garbenschist, is 374 ± 6 Ma, which is interpreted as the time of amphibole growth during fluid infiltration at lower temperature and pressure on a clockwise P–T path that remained in the kyanite stability field. These results point to a relatively short (≈12 Myr) Barrovian metamorphic event that affected the schists of the PBA. An obvious heat source is lacking in the adjacent Pearya terrane, but we speculate it was large Devonian plutons—similar to the 390 ± 10 Ma Cape Woods granite located 40 km across strike from the fault—that have been excised by strike-slip. Arc fragments that are correlative to the PBA are low grade; they never saw the heat and were not directly involved in Pearya accretion. 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
    Abstract Detrital zircon U-Pb geochronology is one of the most common methods used to constrain the provenance of ancient sedimentary systems. Yet, its efficacy for precisely constraining paleogeographic reconstructions is often complicated by geological, analytical, and statistical uncertainties. To test the utility of this technique for reconstructing complex, margin-parallel terrane displacements, we compiled new and previously published U-Pb detrital zircon data (n = 7924; 70 samples) from Neoproterozoic–Cambrian marine sandstone-bearing units across the Porcupine shear zone of northern Yukon and Alaska, which separates the North Slope subterrane of Arctic Alaska from northwestern Laurentia (Yukon block). Contrasting tectonic models for the North Slope subterrane indicate it originated either near its current position as an autochthonous continuation of the Yukon block or from a position adjacent to the northeastern Laurentian margin prior to >1000 km of Paleozoic–Mesozoic translation. Our statistical results demonstrate that zircon U-Pb age distributions from the North Slope subterrane are consistently distinct from the Yukon block, thereby supporting a model of continent-scale strike-slip displacement along the Arctic margin of North America. Further examination of this dataset highlights important pitfalls associated with common methodological approaches using small sample sizes and reveals challenges in relying solely on detrital zircon age spectra for testing models of terranes displaced along the same continental margin from which they originated. Nevertheless, large-n detrital zircon datasets interpreted within a robust geologic framework can be effective for evaluating translation across complex tectonic boundaries. 
    more » « less